Skip to main content

Efficacy of Smartphone Applications for Smoking Cessation

APA Citation

Bricker, J. B., Watson, N. L., Mull, K. E., Sullivan, B. M., & Heffner, J. L. (2020). Efficacy of smartphone applications for smoking cessation: A randomized clinical trial. JAMA Internal Medicine, 180(11), 1472–1480. DOI: 10.1001/jamainternmed.2020.4055

Publication Topic
ACT: Empirical
Publication Type
Article
RCT
Language
English
Abstract

Importance Smoking is a leading cause of premature death globally. Smartphone applications for smoking cessation are ubiquitous and address barriers to accessing traditional treatments, yet there is limited evidence for their efficacy.

Objective To determine the efficacy of a smartphone application for smoking cessation based on acceptance and commitment therapy (ACT) vs a National Cancer Institute smoking cessation application based on US clinical practice guidelines (USCPG).

Design, Setting, and Participants A 2-group, stratified, double-blind, individually randomized clinical trial was conducted from May 27, 2017, to September 28, 2018, among 2415 adult cigarette smokers (n = 1214 for the ACT-based smoking cessation application group and n = 1201 for the USCPG-based smoking cessation application group) with 3-, 6-, and 12-month postrandomization follow-up. The study was prespecified in the trial protocol. Follow-up data collection started on August 26, 2017, and ended at the last randomized participant’s 12-month follow-up survey on December 23, 2019. Data were analyzed from February 25 to April 3, 2020. The primary analysis was performed on a complete-case basis, with intent-to-treat missing as smoking and multiple imputation sensitivity analyses.

Interventions iCanQuit, an ACT-based smoking cessation application, which taught acceptance of smoking triggers, and the National Cancer Institute QuitGuide, a USCPG-based smoking cessation application, which taught avoidance of smoking triggers.

Main Outcomes and Measures The primary outcome was self-reported 30-day point prevalence abstinence (PPA) at 12 months after randomization. Secondary outcomes were 7-day PPA at 12 months after randomization, prolonged abstinence, 30-day and 7-day PPA at 3 and 6 months after randomization, missing data imputed with multiple imputation or coded as smoking, and cessation of all tobacco products (including e-cigarettes) at 12 months after randomization.

Results Participants were 2415 adult cigarette smokers (1700 women [70.4%]; 1666 White individuals [69.0%] and 868 racial/ethnic minorities [35.9%]; mean [SD] age at enrollment, 38.2 [10.9] years) from all 50 US states. The 3-month follow-up data retention rate was 86.7% (2093), the 6-month retention rate was 88.4% (2136), and the 12-month retention rate was 87.2% (2107). For the primary outcome of 30-day PPA at the 12-month follow-up, iCanQuit participants had 1.49 times higher odds of quitting smoking compared with QuitGuide participants (28.2% [293 of 1040] vs 21.1% [225 of 1067]; odds ratio [OR], 1.49; 95% CI, 1.22-1.83; P < .001). Effect sizes were very similar and statistically significant for 7-day PPA at the 12-month follow-up (OR, 1.35; 95% CI, 1.12-1.63; P = .002), prolonged abstinence at the 12-month follow-up (OR, 2.00; 95% CI, 1.45-2.76; P < .001), abstinence from all tobacco products (including e-cigarettes) at the 12-month follow-up (OR, 1.60; 95% CI, 1.28-1.99; P < .001), 30-day PPA at 3-month follow-up (OR, 2.20; 95% CI, 1.68-2.89; P < .001), 30-day PPA at 6-month follow-up (OR, 2.03; 95% CI, 1.63-2.54; P < .001), 7-day PPA at 3-month follow-up (OR, 2.04; 95% CI, 1.64-2.54; P < .001), and 7-day PPA at 6-month follow-up (OR, 1.73; 95% CI, 1.42-2.10; P < .001).

Conclusions and Relevance This trial provides evidence that, compared with a USCPG-based smartphone application, an ACT-based smartphone application was more efficacious for quitting cigarette smoking and thus can be an impactful treatment option.